解比例是指在一个等比数列中,我们可以通过已知比值来求解未知比值的操作。解比例的计算可以通过以下方式进行:
1. 已知相邻两项的比值和其中一项的比值,求其他项的比值:
设等比数列的首项为 a,公比为 r,已知第 n 项与第 n+1 项的比值为 x,已知第 m 项与第 n 项的比值为 y,需求第 k 项与第 m 项的比值。
根据等比数列的性质知道:第 n 项与第 n+1 项的比值为 r,即 a[n] / a[n+1] = r。
这里可以列出以下等式:
a[n] / a[n+1] = x -------- (1)
a[m] / a[n] = y -------- (2)
a[n] / a[n+1] = r -------- (3)
a[n+1] = a[n] / r -------- (根据(3)式得到)
结合式(1)和(3)得到: a[n] = x * a[n+1]
将式(1)和(2)带入,得到:
x * a[n+1] / a[n] = y
x * (a[n+1] / a[n]) = y
x * (1 / r) = y
a[n+1] / a[n] = y * r
原等式为 a[m] / a[n] = y
可得到:a[m] / a[n] = y * r
因此,第 k 项与第 m 项的比值为 y * r, 即 第 k 项 / 第 m 项 = y * r。
2. 已知第 n 项与第 n+1 项的比值和已知项数,求公比:
设等比数列的首项为 a,已知第 n 项与第 n+1 项的比值为 x,已知项数为 N,求公比 r。
根据等比数列的性质,我们知道:第 n 项与第 n+1 项的比值为 r, 即 a[n] / a[n+1] = r。
这里可以列出以下等式:
a[n] / a[n+1] = x -------- (1)
a[n+1] = a[n] / r -------- (2)
将式(2)带入(1),得到:
a[n] / (a[n] / r) = x
(a[n] * r) / a[n] = x
r = x
因此,已知每两项的比值和项数,可以直接得到公比 r。
以上是计算解比例的两种常见情况,具体问题需要具体分析、处理。希望对你有所帮助!
“北京市公共资源交易服务平台已经在房屋建筑、市政工程、水务、交通、园林绿化等领域大力推广电子化招投标,实现了全流程电子化、无纸化。,另据今年9月宝马产品开发主管弗兰克·韦伯透露,电动M3将在未来四年内成为现实,并同步推出燃油版车型供消费者选购;
2021年11月,国家卫生健康委等15个部门联合印发文件,提出到2025年,公共场所母婴设施配置率达到80%以上。,经批准在森林防火区内建设的墓地,应当统一规划,并建设相应的防火墙和防火隔离带。
(杨成松 王珊珊),在双十一期间,华硕推出了相应的优惠活动,为用户提供更具性价比的购买体验。